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Abstract—In wireless networks, energy consumed for commu-
nication includes both the transmission and the processing energy.
In this paper, point-to-point communication over a fading channel
with an energy harvesting transmitter is studied considering
jointly the energy costs of transmission and processing. Under the
assumption of known energy arrival and fading profiles, optimal
transmission policy for throughput maximization is investigated.
Assuming that the transmitter has sufficient amount of data in its
buffer at the beginning of the transmission period, the average
throughput by a given deadline is maximized. Furthermore, a
“directional glue pouring algorithm” that computes the optimal
transmission policy is described.

[. INTRODUCTION

Battery size is one of the main bottlenecks on the network
lifetime in wireless sensor networks. Replacing batteries may
be expensive or inconvenient for nodes that are deployed
in remote locations. In recent years, energy harvesting (EH)
has become a viable solution to operate wireless sensor
nodes in a self-powered fashion for extended periods of time.
However, due to the physical and technological limitations
of EH devices, harvested energy is typically low. Therefore,
management of harvested energy is essential.

In wireless systems, energy consumption for communication
has two components: transmission energy used by the power
amplifier and the processing energy cost [1]. Depending on the
range of communication or the complexity of the processing
circuitry, either of these components can be the dominating
factor. For an energy limited system, it is known that increas-
ing the transmission time and lowering the transmission power
as much as possible is throughput optimal when the processing
energy cost is ignored [2]. On the other hand, it is shown in
[3] that when the processing energy cost is taken into account,
the optimal transmission scheme becomes bursty, as increasing
the transmission time means increasing the energy spent for
processing.

While most of the previous work on EH communication
systems focus mainly on the maximization of throughput while
ignoring the processing energy cost, in this paper we consider
the power used by both the power amplifier and the processing
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circuitry, and optimize the data transmission schedule over
a fading channel. We consider a constant processing energy
cost per unit time whenever the transmitter is operating. We
assume that the transmitter has a finite capacity battery and
that a sufficient amount of data is already available at the
transmitter’s data buffer before transmission starts. We focus
on offline optimization, that is, the energy arrival instants
and amounts as well as channel gains until the transmission
deadline are known in advance by the transmitter. Note that the
noncausal knowledge of energy arrivals can model accurately
systems with predictable energy arrivals [4], or provide an
upper bound on the performance for the case of unpredictable
energy arrivals. Our goal is to identify an optimal transmission
policy that maximizes the total transmitted data by a given
deadline T subject to the energy causality constraint.

Recently, offline transmission policies have attracted sig-
nificant interest [5]-[14]. Optimal transmission policies which
account only for the power amplifier are studied in [5]-[12].
Yang and Ulukus [5] investigate a single link EH system
over a constant channel for given energy and data arrival
profiles, and provide an algorithm which computes the optimal
transmission policy. Other communication scenarios with EH
nodes that have been studied include single link fading channel
[6], multiple access channel [7], interference channel [8] and
two-hop networks [9]-[10]. Battery imperfections for a single
link system is investigated in [11] and [12]. While [11]
studies battery leakage and reduction in battery capacity over
time, [12] investigates finite size battery. Optimal transmission
policies over a constant channel while accounting for both
transmission and processing energy costs are studied in [13]
and [14].

II. PRELIMINARIES
A. System Model

We consider an EH communication system that harvests
energy in packets of finite amount at time instants .o = 0 <
teq < -+ <ten < T such that the packet harvested at t = ¢, ;
has energy F;. Harvested energy is stored in a finite battery of
capacity F,,,, before it is used for transmission. Therefore,
without loss of generality, we can assume that each energy
packet can have at most F,4, amount of energy. We assume
that there is no energy loss in storing and retrieving energy
from the battery. We also assume that the real valued channel
gain h(t) changes at time instants ;9 = 0 < t5; < - <



ty.m < T, and remains constant in between. The channel is
modeled as having additive white Gaussian noise with unit
variance. Without loss of generality instantaneous transmission
rate is given by Shannon capacity 3 log(1 + h(t)p(t)), where
p(t) is the transmission power at time ¢. We assume that the
transmitter is able to change its data rate instantaneously by
changing the transmission power, p(t).

We can combine all energy arrivals and changes in the
channel gain in a single time series tg = 0 < t; < --- <
tny—1 < T. This can be achieved by allowing zero energy
arrivals at some t;’s, or the channel gain to remain constant
across some of the intervals. For consistency in notation, we
assume an energy arrival of Eny = 0 at £ = T. The time
interval between two consecutive events is called an epoch,
and 7; £ t; — t;_1 denotes the duration of the i’th epoch. The
channel gain for epoch i is denoted by h;. We are interested
in offline optimization, that is, we assume that the transmitter
knows all the energy arrival instants and amounts as well as
the channel gains for the period 0 < ¢ < T in advance at
t=0.

We assume that the transmitter consumes energy only when
it is transmitting, and the processing energy cost is € joules
per unit time, independent of the transmission power, p(¢).
We ignore the cost of switching the transmitter ‘on’ and ‘off”,
and assume that no information is conveyed by the state of
the transmitter as in [3].

A transmission policy refers to a power allocation function
p(t) for 0 < t < T. A feasible transmission policy should
satisfy the energy causality constraint:

Et) < Y E, vtelo,T],

1:0<t; <t

(1)

where E/(t) is the total consumed energy by transmission pol-
icy p(t) up to time t, i.e., E(t) = [1 (p(7) + € Lip(ry=0y)dr.
In addition, battery overflows lead to a suboptimal transmis-
sion policy because we can always increase the throughput
by increasing the transmit power such that there is no battery
overflow. Therefore, an optimal transmission policy must also
satisfy the following constraint:

> Ei—E(t) < Epga, V€ [0,T]. 2)

1:0<t; <t

Assuming that the transmitter has sufficient data in its data
buffer at time ¢ = 0, our goal is to maximize the throughput
under the above constraints by deadline 7 for given energy
arrival and fading profile.

B. Single Energy Arrival and Fading Level

It is well known that for a fixed energy budget and
no processing energy, increasing the transmission duration
strictly increases the throughput if the rate-power function is
non-negative, strictly concave and monotonically increasing,
properties that are satisfied by most of the practical rate-
power functions [2]. However, if the processing energy is
not negligible, increasing the transmission duration does not
increase the total amount of transmitted data after a certain

point in time since the processing energy consumption starts
to dominate the consumed energy. It is shown in [3] that there
is an optimal transmission duration and power level which
depend only on the processing energy cost € and the channel
gain. Note that constant power level is optimal due to the
concavity of the rate-power function.

For a single energy packet arrival £ at time t = 0 and
a static channel state h, we first assume that there is no
transmission deadline. Denoting the total transmission duration
by ©, maximum throughput is given by the solution of the
following optimization problem:

S}
—log(1+h 3
owdtirg<p 2 B ©
where v is the transmission power. Setting © = £ in (3)

v+e
and differentiating with respect to v, the optimal transmission

power v* should satisfy

1 1
— = log(1 + hw*).
T og(1 + h")

€+ v*
Above equation has only one solution for the optimal power
level v* which increases as the channel gain h decreases'.
Moreover, v* does not depend on the available energy FE.
When there is a transmission deadline 7', if T" > U*Lﬁ, then the
above solution is still optimal. On the other hand, if T" < U*L“,
transmitting at power v* cannot be optimal because some
energy would remain in the battery at time 7. In this case,
we can increase the throughput by increasing the transmission
power so that all the available energy is consumed by time 7,

and the optimal transmission power is given by % — €.

C. Related Work

1) Glue Pouring: For a battery limited node with pro-
cessing energy cost, when there are multiple fading levels,
optimal transmission policy is different from the well-known
waterfilling solution and called "glue pouring" [3]. For ease
of exposure, we describe glue pouring for two fading levels,
single energy arrival and no deadline. Using differential power
allocation (see [3] for details), for single energy arrival E
and fading states h; > ho with durations 71, 7o, respectively,
the optimal transmission policy is summarized below. In the
following, ©1 and ©9 are transmission durations for epochs
with fading levels h; and hg, and v} and v3 are the solutions
of (4) for channel gains h; and hs, respectively.

o If E < 71(v] + €), then optimal transmission policy is

“4)

0, = ULJN and ©2 = 0 with power levels v] and 0,
U
respectively.

o Ifm(vi+¢) < E<m(vi+ h% - h—1] + €), then optimal
transmission policy is ©1 = 7 and ©4 = 0 with power
levels £ — ¢ and 0, respectively.

. Ile(v§+h—12—h—1l—|—e)<E§7‘1(v5‘+%—%+e)+
T2(v3 + €), then optimal transmission policy is ©1 = 74

E—r1y(v3 +h#2 - ﬁ—‘re)

(=) j— 3 *
and O, = e with power levels v3 +
1 1 * :
e R and v3, respectively.

I This follows from (4) by taking the derivative of v* with respect to h.



o If 7y (v + hlz - h% +€) + 72(vs + €) < E, then optimal

transmission policy is the usual waterfilling.

2) Directional Waterfilling: The directional waterfilling al-
gorithm, introduced in [6] for an EH fading communication
system with no processing energy cost, is an adaptation of the
classical waterfilling algorithm to the EH model where the
energy becomes available over time. Due to energy causality
harvested energy F; can only be allocated to epochs j > i;
and, due to the battery constraint, the amount of energy that
can be transferred to epoch j is limited by 00 — Fj—1.

III. THROUGHPUT MAXIMIZATION
A. Problem Formulation and Solution

In this section we study the throughput maximization prob-
lem with multiple energy arrivals and fading levels. It is
possible to show that within each epoch, when the transmitter
is ‘on’, constant power transmission is optimal [5], so we
denote the nonnegative power level within epoch i as p; with
duration ©;, 0 < ©; < 7. Then, the throughput optimization
problem can be stated as follows:

N o,
max 2710g(1+hipi) (5a)
s.t. O<Z i1 —Oi(pj+e),i=1,..,N, (5b)
i+1
> B 1-2@ (pj +€) < Emaz,i=1,...,N,
Jj=1 J=1
(50
0<©;<7, and 0<p; i=1,..,N. (5d)

Note that this is not a convex optimization problem because
the constraints in (5b)-(5c¢) are not convex. Therefore, we will
reformulate this problem by defining a new variable o; =
©;pi, which denotes the total consumed energy by the power
amplifier within epoch . Then, the optimization problem in
(5) can be written in terms of ©; and «; as follows:

N o, hicui

w35 o (1 + o ) (6a)
st 0< Z(Ej_1 —aj—€0;), i=1,..,N, (6b)

+1 )
ZEJ 1 — Z Q; +€@j) < Emagmi = 17...,]V7

Jj=1

(60)
0<0; <7, and 0<ay i=1,..,N. (6d)

With this reformulation, concavity of (6a) can be argued
from the fact that the function £ log(1 + & “5+) is the per-
spective of the strictly concave functlon 1 log(l iy ;). Since
perspective operation preserves concaV1ty, i log(1+ h@al) is
also concave [15]. The linear constraints in (6b) (6d) define a

convex feasible set, therefore, the optimization problem in (6)
is a convex optimization problem.

The Lagrangian of (6) with A\; > 0, p; > 0,v; >0, 1, >0
and o; > 0 can be written as:

O, h;oy
Zilog (1
2 g<+ol>

Ai Z (aj + €0, — E; 1)

Mz

L= 7)

N
Il
-

Mz

i=1
N i+1 i
Z:U'z Z = 1_2 aj+€@j)_Emaz
=1 Jj=1 1
lN " N
- Z“ (©i —m) + ZVi@i + Zaiaz’-
=1 =1 i=1

Corresponding complementary slackness conditions are
A | Y (e +€0;—E; 1) | =0, Vi (8)
j=1
+1
ZEJ 1 - Z (aj + €0;) — Bmaz | =0, Vi (9)
Jj=1

”/i(@i — TZ') = O, Vi@i =0 and g;Q; ZO, Vi. (10)
Taking derivatives with respect to «; and ©;, we obtain
oL O;h; ol
_——— i — i 11
8_£ o l o 14+ hiai _ hiOéi
90, ~ 2% O; 2(0; + hia;)
—eZ (\j = 1) =% + vi. (12)

We consider KKT condmons together with the complementary
slackness conditions in (8)-(10).
o If ©F = 0, then o = 0 and no power is allocated to
epoch i, i.e., pj = 0.
e fO0<O <myand0< o, ie., v =0,v,=0,0; =0,
then from (11) and (12), we obtain
log (1 N hmf) _ hi(af + e(—);‘)7
o Of + hiaf
which is equivalent to (4) when we replace o with ©7p;.
Therefore, as argued in Section II-B, (13) has a unique
solution which depends only on h; and ¢. We denote this
unique power level as p; = v; and note that p; does
not depend on the Lagrange multipliers A\; and f;, for
j=1,..., N, either.
o IfO =7,and 0 < o], ie., v, >0, v; =0, 0; =0, then
from (11), we get

(13)

-3

j=i

Aj = 1j)- (14)
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Similarly, from (12), we get

1 ] 14 hiaf hiozf
L _
2 %8 or 2(0; + hia})

N
—l—ez (Aj = 15) + i

j=i

(15)

Since v; > 0, from (14) and (15), we can obtain the
following inequality:

hia*-‘
1 1 t
og ( + @f ) >

Comparing with (13) we conclude that (16) is satisfied
only if p; > v}. Then, by using (14) and replacing a;
with ©7p7, we can compute the optimal power level p
as

hi(a + €97)
O + hia!

(16)

1
25 (N — hy)

Notice that A; and ; cannot be positive simultaneously.
Using the complementary slackness conditions in (8) and
(9), we have \; > 0 and p; = 0 whenever the battery
of the transmitter depletes. Therefore, from (17), we can
argue that py, , + ﬁ > pi o+ hl This means that
whenever the sum of the inverse channel gain and the
optimal power level increases from one epoch to the
next, the battery must be empty. When u; > 0 and
Ai = 0, the battery is full. Therefore, from (17), we
can argue that pj,; + ﬁ < p;j+ hi As a result, the
sum of the inverse channel gain and the optimal power
level decreases from one epoch to the next, whenever the
battery is full. Moreover, since depleting all the harvested
energy by the deadline is optimal [12], Ay > 0 and
pun = 0.

Remark 3.1: Optimization problem in (6) may have multi-
ple solutions. Consider a channel with multiple epochs having
the same channel gain h,; and a corresponding optimal trans-
mission policy with 0 < © < 7. As argued from KKT
conditions, p; = v} must be satisfied for these epochs. Then
the corresponding optimal values for h?% = h;p; must also
be the same. Without loss of optimality, we can find another
optimal transmission policy by transferring some of the energy
between those epochs such that the optimal h;p] is preserved.
Note that if the channel gains are different (Section II-B) or
pi > wf, ie, ©Ff =7 0r A\; > 0 or p; > 0, for all 4, then
there is a unique solution.

*

Pi

1
T if pf > . (17)

B. Directional Backward Glue Pouring Algorithm

We can allocate the harvested energy to epochs starting from
the last non-zero energy packet to the first such that constraints
in (1)-(2) (akin to directional waterfilling in Section II-C) are
satisfied. In addition, the optimal transmission policy utilizes
epoch ¢ either partially, i.e. ©] < 7, with power level p} = v;,
or fully, ie., ©f = 7;, with power level p; > v} as argued
in Section III-A. Therefore, the optimal transmission policy is
a directional glue pouring algorithm in which each harvested

energy packet F; is allocated to subsequent epochs using the
glue pouring algorithm.
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Fig. 1. Directional backward glue pouring algorithm
Consider the example in Fig. 1(a). Arrival times of the
harvested energy packets are shown with thick downward
arrows. The thin downward arrows correspond to the time
instants when the channel gain changes with virtual energy
arrivals (E] = E3 = E4 = 0). Inverse of the channel gains
are indicated by solid blocks. Optimal power levels v} for
0 < ©; < 7; are indicated with dashed horizontal lines above
the inverse channel gain blocks such that v} corresponds to
the distance between the dashed lines and solid blocks. Note
that the energy consumed for processing is not shown in the
figure; however, it can be computed from the total transmission
duration. As argued before, the algorithm first computes the
optimal power level for the last non-zero energy arrival Es.
As shown in Fig. 1(b), the algorithm considers the harvested
energy Es for epochs three, four and five. It allocates Fs to the
third and fourth epochs using glue pouring algorithm as argued
in Section II-C. Note that only a portion of the third epoch
is utilized with power level v3 due to glue pouring. Then, the
algorithm considers the first non-zero energy arrival E, and
allocates this energy according to glue pouring algorithm as
shown in Fig. 1(c). Note that some of the energy is transferred
to third and fourth epochs as argued in Section II-C. However,
transferred energy is limited due to the finite battery size which
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Fig. 2. (a) Optimal power levels for ¢ = 0 are P = [2.17,0.29, 2.01,

1.18,1.65] pW with durations ® = [0.5,3.5,1.1,1.9,3.0] sec. Total
transmitted data is B = 2.11 nats. (b) Optimal power levels for ¢ =
1 pW are P = [1.99,3.48,3.05,0,1.99] uW with durations ® =
[0.36,0.22,1.10, 0, 1.66] sec. Total transmitted data is B = 1.39 nats.

explains the water level difference (Section IIT).

IV. NUMERICAL RESULTS

In this section, we provide numerical results to show the
effect of processing energy cost on the optimal throughput. We
consider an energy arrival profile E = [1.1,3.2,2.8,1.4,3.1]
microjoules (u.J), channel gains h = [0.7,0.2,0.4,0.3,0.7] x
105 with epoch durations 7 = [0.5,3.5,1.1,1.9,3.0] sec
until deadline 7' = 10 sec. We consider that energy packets
arrive at time instants when channel gain changes. We set
FEmar = 5 pJ. The optimal offline transmission policy with
no processing energy cost, i.e., ¢ = 0 is shown in Fig.
2(a). As we can see from Fig. 2(a), the transmitter utilizes
each epoch fully. The difference in power levels is due to
the energy causality and finite battery capacity. Using the
same energy arrival and channel profile for e = 1 puW, we
obtain the transmission policy in Fig. 2(b). As shown in the
figure, the optimal transmission policy is bursty, and the total
transmission energy is reduced due to the processing energy
cost. Notice that the optimal policy allocates energy to epoch
two even though it has the worst channel gain. This is due to
finite capacity battery.

The variation of the throughput with respect to € for the
same energy and channel profile given above is shown in
Fig. 3. As expected the optimal throughput decreases as the
processing energy cost increases.
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Fig. 3. Average throughput versus processing energy cost.

V. CONCLUSIONS

In this paper, we have studied an EH communication system
with processing energy cost over a fading channel. Under the
noncasual knowledge of energy packet arrivals, we have iden-
tified the optimal transmission policy such that the transmitted
data is maximized by a given deadline. Our solution involves
a convex optimization formulation of the problem as well
as an optimal ‘directional glue pouring’ algorithm. Finally,
numerical results have been provided to illustrate the effect of
processing energy cost on the throughput.
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